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1. INTRODUCTION TO THE RESEARCH TOPIC

Tiny Machine Learning (TinyML) is a subset of Machine Learning that serves as a link between the ML domain
and the embedded system ecosystem. It enables us to employ advanced machine learning capabilities on edge
devices with limited memory, computation power and energy consumption while offering reduced latency and
better privacy through on-device data processing.

Besides all the advantages mentioned above, there are many challenges when deploying machine learning
models into resource-constrained devices. Most of the challenges originate from heterogeneity and resource
constraints of the edge devices with lower memory capacity, compute power and energy consumption [4],[16].
Considering the intersection with machine learning, our research mainly belongs to the computer vision and
pattern recognition field. In this direction, our research aims to propose solutions related to image classification
tasks with deep neural networks. On the other hand, in the TinyML field, a variety of approaches and methods
are used to overcome these issues. One of the main techniques used to compress and deploy these models on
devices with limited resources is low-precision quantization. Quantization algorithms are mainly grounded on the
idea of reducing the precision of weights, biases, and activations. In other words, a 32-bit full precision model is
compressed to a low-bit representation by employing bit widths from 8-bit to 1-bit.

As we conduct research related to compressing machine learning models by maintaining their capability, the
conferences related to our research mainly belong to computer vision and machine learning fields. In this context,
the most prestigious conferences are IEEE Computer Vision and Pattern Recognition, European Conference on
Computer Vision, and IEEE International Joint Conference on Neural Network. IEEE/CFV CVPR is an annual
conference on computer vision and pattern recognition. It is regarded as one of the most important conferences
in the field. According to Google Scholar Metrics (2024), it is the second highest impact computing venue after
Nature [I]. ECCV is another important conference in which papers we are inspired by are published, which is
co-organized by the Computer Vision Foundation. Additionally, the IEEE International Joint Conference is another
conference through which we can aim to publish our research. Considering the interest and funding coming from
the best companies and universities and the "h-5 index" metric, along with NeurIPS, ICML, and ICLR, these are
the most prestigious conferences. Also, IEEE Transactions on Pattern Analysis and Machine Intelligence, IEEE
Transactions on Neural Networks and Learning Systems, and Proceedings of the IEEE International Conference
on Computer Vision are some of the most prestigious journals available, considering their impact scores [3], [2].

1.1. Preliminaries

Above all, the fundamental concept for the understanding of the research topic is Quantization. In Figure 1,
a schematic overview of matrix-multiply operation in neural network accelerator hardware is shown [13]. A
MAC operation starts by loading bias b,. After, W, and x,, are loaded into the array in order to calculate
Cum = Wymxm multiplication. Lastly, biases are added to the calculated value in accelerators.

A}’l - bn + ZCn,m
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Figure 1: A schematic overview of matrix-multiply logic in neural network accelerator hardware [13]].

Most neural network models are trained with 32-bit floating point so our values are stored and calculated with
32-bit representation with the requirement that the accelerator support FP logic. Consequently, we can significantly
reduce the amount of used resources applying quantization techniques through using lower bit representation.

The main idea behind is the conversion of a value from floating point representation to an integer one. Briefly,
a floating point vector £ can be expressed by an integer vector x;,,; multiplied by a scale factor sy:

=Sy Xipt B X

where s, is a floating-point scale factor and x;,; is an integer vector, e.g., INT8.Together with them, £ is the
quantized vector.

This representation reduces the energy needed for data transfer, computation, and memory, which eventually
helps to deploy machine learning models on edge devices. Apart from these, Uniform/Non-Uniform Quantiza-
tion and Symmetric/Asymmetric Quantization are related concepts when dealing with quantization schemes.
Quantization-Aware Training (QAT) is another concept that is developed to train neural networks with simulated
quantization in order to make the network aware of quantization priorly.

In order to cope with challenges and apply known algorithms in the TinyML ecosystem, some frameworks such
as TensorFlow Lite Micro are used [7]. Additionally, Pytorch supports various approaches for quantization [14].

1.2, Research topic

Besides all the advantages mentioned above, there are many challenges to solve in order to deploy machine
learning models into resource-constrained devices. Most of the challenges originate from heterogeneity and
resource constraints of the edge devices with lower memory capacity, compute power, energy consumption [4],[16].
In the field of TinyML, a variety of approaches and methods are used to overcome these issues. One of the
main techniques used to compress and deploy these models on devices with limited resources is low-precision
quantization. Quantization algorithms are mainly grounded on the idea of reducing the precision of weights,
biases, and activations. In other words, a 32-bit full precision model is compressed to a low-bit representation
by employing bit widths from 8-bit to 1-bit. Various quantization techniques are available in the literature so
far. The thesis aims to explore the solutions to reduce memory and computation overhead at run-time by
employing a dynamic quantization approach while focusing on choosing efficient bit precisions for different
layers considering the given input. Eventually, an instance-aware dynamic quantization framework that reduces
computation overhead while ensuring minimal accuracy loss. In other words, from a set of candidates varying
from 1 to k bit-width (b!,b?, ..., b), for each layer L, efficient bit precision is chosen depending on the given input
to the model with #n layers.

The proposed dynamic quantization framework aims to reduce computation overhead without changing
the current architecture while enabling faster execution by enabling simpler operations instead of full precision
floating point operations, adapting the model to the given input.
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2. MAIN RELATED WORKS

2.1. C(Classification of the main related works

The research will explore the efficient quantization schemes in the context of TinyML. In detail, we will focus
on mixed precision combined with dynamic quantization concerning a given input, specifically targeting image
classification tasks. Here is the classification of the main related works:

1. Quantization techniques on deep neural networks to reduce memory consumption and computation overhead
2. Efficient mixed-precision quantization

3. Dynamic quantization and TinyML solutions in dynamic settings

2.2. Brief description of the main related works

2.2.1 Quantization techniques on deep neural networks

Neural Network Quantization has been one of the remarkable areas in the field of machine learning for recent
years. Earlier works start with quantization network weights with certain bit-widths without focusing on
activation precision [§], [10], [22]. Naturally, the main narrative in these papers was reducing model size and
also storage efficiency. Later, activation bit-widths are taken into consideration by some fundamental papers
in the field [15], [21], [6]. The DoReFa-Net [21] uses the "straight-through estimator" [20] to train convolutional
neural networks (CNNSs) using low bitwidth weights, activations, and gradients. On the other hand, PACT [6],
PArametrized Clipping acTivations, is a quantization technique for activations, which enables minimum accuracy
loss when working in low precisions. Note that, in these works, researchers generally propose methods based on
a quantization with the same precision for all layers.

2.2.2 Efficient mixed-precision quantization

With the help of various hardware platforms, a mixed precision approach has been conducted in recent years.
Because search space is very large O(M"N) Neural Architecture Search methods are used to determine the optimal
precision values for layers [18]. [18] and the following works contributed to the literature by explaining an SGD-
based differentiable neural architecture search for mixed precision and DAG approach for candidate architectures
and adding probabilistics to optimize. Also, it is shown that mixed precision training can substantially reduce the
computational resources required, specifically in terms of memory bandwidth and processing time, making it
feasible to train larger and more complex models within the same hardware constraints [17]. This paper proposes
a regularization way for better training of mixed precision DNNs. Researchers who use gradient-based algorithms
(SGD) to find bit-widths add quantization step size as a learning parameter to minimize a newly defined loss
function. In [17], STE approach is used to show that the quantizer’s parameters, including the bitwidth, can be
learned with gradient methods if a good parametrization is chosen. They propose to learn the step size and
dynamic range. The bitwidth can be inferred from them by showing that learning directly the bit-width is not
optimal. In [18]], a novel, effective, and efficient differentiable neural architecture search (DNAS) framework is
proposed to solve the precision selection problem. They represent the architecture search space with a stochastic
super net where nodes represent intermediate data tensors of the super net (e.g., feature maps of a ConvNet) and
edges represent operators (e.g., convolution layers in a ConvNet). Any candidate architecture can be seen as a
child network (sub-graph) of the supernet.
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Figure 2: Mixed Precision Neural Architecture Search

2.2.3 Dynamic quantization and TinyML solutions in dynamic settings

Even though mixed precision enables the development of different architectures through choosing different
bit-widths for each layer, existing research proposes fixed, predefined bit-widths which are not changing without
re-training. This situation limits the capability of the model. Consequently, some dynamic quantization solutions
are available in the literature. In the dynamic network quantization literature, one of the very first works was
published in 2018 [19]. In this paper, a Dynamic Network Quantization framework utilizes bit widths of layers via
bidirectional LSTM which exploits the reinforcement learning. The framework was based on weight quantization
and uses RL which leads to high computation overhead. Also, layer bit widths are fixed during inference.

Furthermore, AdaBits were proposed to allow dynamically adjust bit precision of the model during inference
[9]. The main drawback of this paper is that all layers share the same bit precision so the framework cannot exploit
the advantages of mixed precision.

In [5], a bit predictor, Bit-Mixer, which focuses on choosing bit precisions for each layer on inference time is
proposed. Bit-Mixer optimizes the bit precisions considering the resource availability and performance instead of
focusing on the input.

(a) Independent: Each bit-width re- (b) Adabits: A single network can be (c) Proposed method (Bit-Mixer): A
quires training a new network with inde- quantized to any of n bit-widths at run- single network whose individual layers
pendent weights. time. All layers inside the network share can be quantized at runtime to any bit-
the same bit-width. width, without any re-training, resulting

in an exponential number of mixed preci-

sion networks that one can choose from

to fit the device characteristics and com-

putational resources available on-the-fly.

Figure 3: Comparison between prior network quantization paradigms

One of the earliest research focused on the input data is D2NN [11] which executes a subset of the neurons
depending on the given input.
In [12], authors present an Instance-Aware DQNet framework which consists of a predictor bit-controller
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Figure 4: Dynamic network quantization scheme [12]

network trained together with the model itself. This framework is the most similar work to our thesis so we will
focus on the possible directions considering the results of this paper.

2.3. Discussion

The existing solutions in dynamic quantization suffer from the lack of an instance-aware approach that considers
the complexity of the given inputs to the model. Even though similar works exist, more robust and applicable
framework methods are not available in the literature. Based on this, the main open issue is "How can we design and
implement an instance-aware dynamic quantization framework that adapts bit precision considering given input for devices
with limited memory and computation power while maintaining model accuracy?”. Additionally, testing and real-world
deployment of these solutions are also another open problem in the current literature.
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